
Siamese Adaptive Transformer Network for Real-Time Aerial Tracking

Daitao Xing1, Athanasios Tsoukalas2, Nikolaos Evangeliou2, Nikolaos Giakoumidis3 and Anthony Tzes2,4

Abstract— Recent visual object trackers provide strong dis-
criminability towards accurate tracking under challenging sce-
narios while neglecting the inference efficiency. Those methods
handle all inputs with identical computation and fail to reduce
intrinsic computational redundancy, which constrains their
deployment on Unmanned Aerial Vehicles (UAVs). In this
work, we propose a dynamic tracker which selectively activates
the individual model components and allocates computation
resources on demand during the inference, which allows deep
network inference on onboard-CPU at real-time speed. The
tracking pipeline is divided into several stages, where each stage
consists of a transformer-based encoder that generates a robust
target representation by learning pixels interdependence. An
adaptive network selection module controls the propagation
routing path determining the optimal computational graph
according to confidence-based criteria. We further propose
a spatial adaptive attention network to avoid computational
overhead in the transformer encoder, where the self-attention
only aggregates the dependencies information among selected
points. Our model achieves a harmonious proportion between
accuracy and efficiency for dealing with varying scenarios,
leading to notable advantages over static models with a fixed
computational cost. Comprehensive experiments on aerial and
prevalent tracking benchmarks achieve competitive results
while operating at high speed, demonstrating its suitability on
UAV-platforms which do not carry a dedicated GPU.

I. INTRODUCTION

Recent developments on visual object tracking techniques
have facilitated their applications in a variety of fields such
as path planning [1], visual surveillance [2], and border
security [3]. Among those, Unmanned Aerial Vehicle (UAV)
tracking has drawn increasing attention for its flexibility and
adaptability under intricate circumstances. Recent methods
have focused on building more profound and accurate models
to deal with challenging scenarios like fast motion, low-
resolution, frequent occlusion, etc. However, most of those
methods neglect to fulfill the real-time requirement on em-
bedded platforms with limited computational resources.
In the visual tracking community, Deep Siamese networks

play an important role and achieve remarkable progress
on accurate tracking. Recent years have witnessed many
successful Siamese models [4]–[9]. The recent research [10]–
[12] on attention and transformer mechanisms further speeds
up the process of building more powerful trackers. However,

1Department of Computer Science and Engineering, New York Univer-
sity, 11201, New York, USA.

2Electrical & Computer Engineering, New York University Abu Dhabi,
129188, Abu Dhabi, UAE.

3Kinesis Core Technology Platform (CTP), New York University Abu
Dhabi, 129188, Abu Dhabi, UAE.

4Center for Artificial Intelligence and Robotics, New York University
Abu Dhabi, 129188, Abu Dhabi, UAE.

Corresponding author’s email: anthony.tzes@nyu.edu.

Fig. 1: Overview of the proposed tracking strategy for
adaptive inference based on the input scenarios complexity.
In most cases, a shallow network with only one encoder
block is sufficient to track objects. An array of encoder
blocks with increasing representative ability are employed to
deal with more challenging cases. The optimal computational
graph is determined by the network selection module.

most prevalent deep Siamese trackers perform inference with
a cumbrous computational graph or fixed network parame-
ters, which constrains their deployment on mobile devices
with limited computational power.
In this work, we aims to achieve a desired trade-off between
tracking efficiency and accuracy for dealing with varying
computational demand. We introduce a dynamic tracking
architecture consisting of two adaptive components, i.e.,
adaptive attention and adaptive network selection, which
adapts the network structures and parameters to the input
during inference. As shown in Figure 1, tracking scenar-
ios could be categorized into various levels according to
their complexity and can be tracked with the corresponding
inference stage. For canonical (”easy”) samples where no
background noise appears, a shallow network can correctly
track the objects. With the occurrence of distractors or other
challenging scenarios like fast motion and occlusion caused
by the UAV and object relative motion, more computational
resources will be allocated for more sophisticated models
to recognize the objects. The selection is determined dy-
namically based on the prediction states from the previous
stage without any prior knowledge. To selectively activate
the model components, we estimate the Kullback-Leibler
divergence between the predicted localization distribution
and the expected one. This provides a criterion to determine
whether to employ the next inference stage or directly output
the results.
To increase the capability of discriminating between the



target and the background distractors, we employ the trans-
former as the encode network to model the interdependencies
between pixels. However, the computational and memory
costs are relatively high even for a feature map with reduced
size. To alleviate this problem, we propose a spatial sample
attention network to concentrate on the dependencies within
selected areas. Based on the predicted object localization
distribution, we can preclude most of the irrelevant feature
points and construct a robust and holistic target representa-
tion more efficiently. Compared with static trackers, which
have a fixed network construction and parameters at the
inference stage, our tracker (named SiamATN) can adjust the
model architecture and allocate appropriate computational
resources based on the complexity of the scenario, and
therefore reduce the redundant computations on those ”easy”
cases, leading to notably superior accuracy, computational
efficiency, and adaptiveness on the UAV tracking.
Overall, Our main contributions are summarized as follows:

• We introduce an adaptive network selection module
to allocate computational resources on-demand at test
time, yielding a dynamic tracking network. It fuses the
discrimination ability of a deep network and the fast
inference of a shallow network and leads to remarkable
advantages in terms of efficiency and accuracy.

• We propose a spatial adaptive attention network for
learning a robust target representation under an accept-
able computational complexity.

• Superior performance on multiple benchmarks demon-
strates the effectiveness of the proposed method against
other state-of-the-art (SOTA) trackers. Particularly, our
approach achieves SOTA results while running at an
average of 34 FPS on a single CPU. The performed
field tests further validate the efficiency of SiamATN in
real world applications.

II. RELATED WORK

Object Tracking. The tracking methods can be divided into:
a) Discriminative Correlation Filter (DCF) based trackers and
b) deep learning-based trackers. DCF based trackers [13]–
[16] could run with real-time speed on CPU, but their per-
formance is constrained by the feature representation ability
of handcrafted features. Other DCF tracker [17] introduce
deep features to improve on accuracy but suffer in terms
of computational speed. In contrast, deep learning based
trackers, like the Siamese-based trackers, including anchor
based trackers [7], [11] and anchor-free trackers [4], [6],
[18], achieve remarkable enhancements in both accuracy and
speed by utilizing a high-end GPU device. SiamAPN [8],
SiamBAN [9] improves the performance by learning dy-
namic anchors or adaptive filters. Instead, our tracker adjusts
the network architecture to reduce redundant computations.
Transformer. Transformer was first proposed for machine
translation in [19] and shows great potential in many sequen-
tial tasks. Recent works [10] employ the attention mechanism
for more robust tracking. Aerial trackers, SiamAPN++ [11]
and HiFT [12], make use of transformer to fuse feature maps
for better discrimination and achieve SOTA performance.

While those trackers concentrate on building a more robust
representation with transformer, our tracker focuses on re-
ducing the intrinsic computational redundancy.

III. SIAMATN FRAMEWORK

In this section, we describe the proposed SiamATN frame-
work. As shown in Figure 2, SiamATN consists of 4 parts:
(1) a Siamese network backbone for feature extraction, (2)
multiple spatial adaptive attention sub-networks for further
feature encoding, (3) the corresponding prediction head for
classification and regression and (4) the adaptive network se-
lection module for selectively activating model components.

A. Siamese Networks for Visual Tracking

The Siamese network consists of two parameter sharing
branches, i.e., the template branch, which takes the initial
cropped frame (denoted as z ∈RHz×Wz×3) as reference image
and the search branch, which processes the current frame
(denoted as x ∈ RHx×Wx×3) for tracking. The Siamese back-
bone (denoted as φ(.)) performs the same projection on the
input z and x and outputs a common embedding feature space
φ(z) ∈ RC×Wz

r ×Hz
r and φ(x) ∈ RC×Wx

r ×Hx
r for subsequent

tasks, where r is the downsample ratio. Specifically, we
employ ShuffleNet [20] as the backbone, considering its
computational efficiency on mobile devices and extract the
feature maps from conv4 with a spatial downsample ratio r =
1
16 .The lightweight backbones are insufficient for extracting
robust discriminative features, which is vital for the track-
ing performance, especially under uncertainty scenarios. To
alleviate this problem, we apply additional encoding blocks
to reinforce the feature representation. For an input sample
x (or z), the forward propagation of an L-stages encoding
network (Sec. III-B) can be formulated as:

ML
x = F L ◦F L−1 ◦ · · · ◦F 1(φ(x)) (1)

where F ℓ is the encoding network at stage ℓ,1 ≤ ℓ ≤ L.
Considering the diverse computational demands for different
tracking scenarios, we may terminate the inference procedure
at an intermediate stage. Specifically, the correlation features
on stage ℓ can be represented as:

Mℓ
x = F ℓ ◦F ℓ−1 ◦ · · · ◦F 1 (φ(x)) ,1 ≤ ℓ≤ L (2)

where the ℓ is determined base on the adaptive router network
(Sec. III-C) and M0

x = φ(x). Afterwards, a depth-wise cross-
correlation is performed between Mℓ

x and Mℓ
z as Rℓ =Mℓ

x ⋆Mℓ
z ,

where ⋆ denotes the depth-wise correlation operation and
the Rℓ is a multi-channel response map which is adopted
as the input of the prediction head. Inspired from [18], the
correlation response map Rℓ is fed into two parallel branches:
one for object classification and centerness prediction and
another for bounding box regression. Each branch consists
of 3 stacked convolution layers to generate the final results
Aℓ

cls, Aℓ
cen and Aℓ

reg, where Aℓ
cls represents the foreground and

background probability score map, Aℓ
cen denotes the predicted

centerness scores and Aℓ
reg predicts the distances from each

feature point to the four sides of the bounding box.



Fig. 2: The overview of the SiamATN tracking framework. It consists of a shared backbone followed by encoding stages
and corresponding prediction head. The optimal exit depth is determined by Network Selection module. Auxiliary stages
will be activated if the KL-divergence is over η and perform self-attention over adaptive selected point set. The procedure
will continue until the exit criterion is satisfied or the network reaches depth maximum.

B. Spatial Adaptive Attention Network
Given the embedding feature φ(x), the encoder network

F is designed to learn a robust appearance model. However,
the Convolution layers are insufficient to learn global depen-
dencies which may degrade the model capacity for localizing
the target objects under complex scenarios. Accordingly, we
explore the multi-head self-attention mechanism to capture
the spatial relationship between feature points and generate
discriminative features for target localization. Specifically,
let xℓp ∈ Rd denotes an element point of Mℓ

x , where p is
the spatial position. The attention function is performed on
query vector qℓ

p, key vector kℓ
p and value vector vℓp which

are learned from xℓp as:

qℓ
p = Wℓ

qxℓp,k
ℓ
p = Wℓ

kxℓp,v
ℓ
p = Wℓ

vzℓp (3)

where Wℓ
q,Wℓ

k,W
ℓ
v ∈ Rd×d are learnable weights. By divid-

ing the embedded vector into N parts, each part represents an
attention head. And the final attention feature x̂ℓp is calculated
by:

x̂ℓp =Concat([
χℓ

∑
p′=1

σ

(
qℓ

p(i)
)T kℓ

p′(i)√
dhead

 ·vℓp′(i)]
N
i )W

ℓ
o (4)

where Wℓ
o ∈Rd×d is the learnable projection matrix, dhead is

the dimension of each head, equal to d
N by default. χℓ is the

sample space on ℓ stage which provides reference points as
keys and values and is set to Mℓ

x in full attention scheme. σ is
the so f tmax function and Concat refers to the concatenation
operation. The query qℓ

p is compared with every key point kℓ
p′

on χℓ and extract useful information from the corresponding
value vℓp′ . The final output of the multi-head attention layer
is given after a fully connected feed forward network as:.

F ℓ(xℓp) = xℓp + x̂ℓp +ρ(Wℓ
2ρ(Wℓ

1(x
ℓ
p + x̂ℓp))) (5)

where Wℓ
1 and Wℓ

2 are learnable linear transform weights and
ρ is activation function. The same network and parameters
are applied on Mℓ

z to generate the correlation filter. And each
F ℓ consists of D = 2 multi-head attention layers.
Despite the strong discriminability provided by the self-
attention module, its computational and memory costs are
relatively high when traversing the whole feature map.
Additionally, most reference points are irrelevant to the
query point but only deliver noisy background information.
To address this problem, we introduce the spatial attention
module, which adaptively selects the reference points based
on the response map from previous layer. By ranking Aℓ

cen
according to the response score, only the pixels which share
a similarity with the target object are taken as the reference
features:

χ
ℓ =

[
Mℓ

x(i, j, :)
]

Aℓ−1
cen (i, j)>τ

(6)

Only the points with score higher than the threshold τ during
tracking are selected as the reference points in χℓ. For batch
processing efficiency during training, we replace the above
criterion with top-k similarities, i.e., (i, j) ∈ TOP(Aℓ−1

cen ;K).
The selected points serve as key and value features. Then
the attention is operated between the query vectors and the
reference points and its computational complexity is linear
to K. Thus, we model the pixels interdependencies in a
computational efficient way.

C. Adaptive Network Selection

To adapt the network structure to the input during the
inference, we set up the adaptive routing network to select the
appropriate depth of encoding layers and the corresponding
classifier. We utilize the background appearance information
learned from the prediction heads to estimate the tracking
complexity. For stage ℓ at frame t, we estimate the divergence



Fig. 3: Visualization of network selection workflow. The
trajectory is recorded and predicted by a Kalman filter
(KF). The expected distribution pt (red circle in the frame)
generated from KF prediction is compared with estimated
distribution qt generated from cross correlation, yielding
KL score for network selection. The line plots are X&Y
coordinates from KF predictions b̂−t ,b̂t and ground truth bt .

between the predicted target localization distribution qℓt and
the expected distribution pt with:

KL
(

pt∥qℓt
)
=

∫
X

pt(x) log
pt(x)
qℓt (x)

dx (7)

where KL is the Kullback-Leibler divergence and X is the
sample space which equals to the size of the feature maps, as
shown in Figure 3. In practice, we choose the predicted and
ground truth centerness score map as qℓt and pt respectively.
Note that Acls and Areg are not calculated at this stage. While
pt can be approximated from b̂t−1, it may bring target drifts
caused by fast motion, camera movement, etc. Therefore, we
apply the Kalman filter to correct the observation. Given the
estimated state b̂−t from the Kalman filter, the optimal stage
ℓopt

t of the encoding network F is selected by :

ℓopt
t = min

({
ℓ : max

{
0,KL(pt∥qℓt )−η

}
= 0

})
(8)

Where η is the threshold to control the routing path.

D. Training Objectives

Our model is trained in an end-to-end way, where the train-
ing objective is a weighted average loss for the prediction
branches on each stage:

L =
L

∑
ℓ=1

L ℓ (9)

And the loss on stage L ℓ is:

L ℓ = λclsL
ℓ

cls +λcenL
ℓ

cen +λiou L ℓ
iou +λLregL

ℓ
reg, (10)

where Lcls is the cross-entropy loss for classification, Lcen is
the binary cross entropy loss for the centerness score, Liou is
the GIOU [21] loss between prediction boxes and the ground
truth box and Lreg is the L1 loss for regression. Constants
λcls, λcen, λreg and λiou weight the losses.

IV. EXPERIMENTAL AND SIMULATION STUDIES

A. Implementation Details

The backbone, i.e., ShuffleNet [20] is pre-trained on
Imagenet [22] and the conv 4 of with depth of C = 232 is
extracted for further encoding. We add a convolution layer
to reduce the feature dimension into d = 192. The network
is trained offline for 100 epochs with 128 image pairs per
batch. The patch pairs z and x are cropped from two images
of the same video with a maximum gap of 100 frames and
are resized into 80×80 pixels and 320×320 respectively.
The training data consists of the training splits from La-
SOT [23], TrackingNet [24], Got10K [25] and COCO [26].
We set up spatial adaptive attention stages number L = 3
as it provides enough representation power for complex
cases.For search branch, We take K = 100 all stages. We
use the ADAMW [27] optimizer with an initial learning
rate of 10−5 for the backbone parameters and 10−4 for
rest of components. During training, the first layer and
all BatchNorm layers from the backbone are frozen. The
learning rate drops by a factor 0.1 on 90 epochs. For all
stages, the prediction losses are weighted with λLcls = 5,
λiou = 5 and λreg = λcen = 2 respectively. During tracking,
η is set to 0.1. All experiments are conducted on an laptop
with an Intel i7-9750H CPU and an NVidia 2060 for GPU
speed test.

B. Evaluation on Visual Tracking Benchmarks

In this section, we compare our approach with 15
SOTA trackers. There are 3 anchor-based Siamese meth-
ods (SiamRPN++ [5], DaSiamRPN [7], SiamAPN [8]), 4
anchor-free Siamese methods (SiamFC [4], SiamFC++ [6],
SiamBAN [9] and SiamCar [18]), 5 DCF based meth-
ods (ECO [15], fDSST [14], KCF [13], CSRDCF [28],
CCOT [17]) and 3 attention based methods (SiamGAT [10],
SiamAPN++ [11], HiFT [12]).
UAV123 [29]. is one of the largest UAV tracking bench-
marks, including 123 low altitude aerial videos with more
than 112K frames, and adopts success and precision metrics
for evaluation. We report the performance diversity when
using different stages for tracking. As shown in Figure 4,
the combination of a lightweight backbone with one attention
layer, i.e., SiamATN-stage1 brings remarkable performance
enhancement over trackers based on deep networks (Re-
set50 [30]) or handcraft features (ECO [15]) especially
on precision score. With two attention blocks, our tracker
achieves comparable results with SOTA free-anchor Siamese
tracker SiamBAN [9]. Introducing adaptive network selection
won’t effect the tracking performance, but help in achieving
more stable results with a precision score of 85.2% and
success score of 65.0%. The overall results demonstrate that
SiamATN achieves superior performance against other SOTA
trackers.

UAV20L [29] contains 20 long-term sequences with an
average of 3k frames per sequence. As shown in Table I, the
classic DCF trackers based on the handcrafted features run
at real-time speed on the CPU but have limited accuracy.



Fig. 4: Evaluation results of trackers on UAV123 [29] dataset.

In contrast, deep trackers relying can achieve high perfor-
mance but are only applicable on GPU devices. Instead,
our SiamATN runs at real-time speed (34Hz) on the CPU
while obtaining SOTA results. Specifically, SiamATN gains
a precision score of 86.5% and an AUC score of 68.2%,
outperforming the recent SOTA Siamese aerial tracker HiFT.
Similar to UAV123, we also report the performance and
speed under different settings. The tracker without adaptive
module gives the best AUC score but costs an extra 2×
inference time.

C. Ablation Analysis

Speed, FLOPs and Params. Table II illustrates the com-
plexity analysis of the proposed tracker. For reference,
SiamRPN++ [11] has almost 60G multiply–accumulate op-
erations which is too heavy to run fast on the CPU. The
adaptive network selection enables the advantage of the
lightweight backbone and spatial adaptive attention, and
fulfills the balance between the model complexity and the
inference speed without adding extra operations.
Visualization of the adaptive network selection. Figure
5 shows a tracking sequence with its KL-divergence score

TABLE I: Overall evaluation on UAV20L [29]. Prec. and
Succ. respectively denote precision score at 20 pixels and
AUC of success plot. The speed marked with ∗ are test under
GPU.SiamATN(i) denotes i stage.

KCF CSRDCF TADT CCOT ECO Siam DaSiam Siam
[13] [28] [31] [17] [15] FC [4] RPN [7] FC++ [6]

Prec. 0.507 0.588 0.609 0.542 0.589 0.599 0.665 0.695
Succ. 0.298 0.443 0.459 0.403 0.427 0.402 0.465 0.533
FPS 95 6 32.5 1 30 27∗ 134∗ 95∗

Siam Siam Siam HiFT Siam Siam Siam Siam
RPN++ [5] APN [8] APN++ [11] [12] ATN(1) ATN(2) ATN(3) ATN

Prec. 0.696 0.721 0.736 0.763 0.827 0.83 0.842 0.865
Succ. 0.528 0.539 0.560 0.566 0.641 0.674 0.685 0.682
FPS 35∗ 200∗ 35∗ 135∗ 36 25 16 34

TABLE II: Speed, FLOPs, and Params comparison with
SiamRPN++ [11]. All speed are tested on CPU. SiamATN(i)
denotes i stage.

Trackers Siam Siam Siam Siam Siam
RPN++ [11] ATN(1) ATN(2) ATN(3) ATN

FLOPs(G) 59.6 0.92 1.6 2.28 0.92-2.31
Params(M) 53.9 2.52 4.16 5.8 5.8
FPS(CPU) 0.8 36 25 16 34
FPS(GPU) 35 89 73 60 83

Fig. 5: A long-term tracking example where the the track-
ing network is adaptively selected according to the KL-
divergence score. The bounding box and centerness score
predictions for each stage are shown in row 2 to row 4.

for each frame. Only stage 1 is used for tracking when no
distractors appears in the background. Otherwise, stage 2
and stage 3 will be triggered to deal with hard negative
examples and keep the focus on the tracking object until the
background is clear again. Thus, our model allocates model
components on demand at test time, leading into a notable
advantage in the computational efficiency while maintain a
high accuracy.

D. Experimental Field-Test

The field tests are set to: (1) track a fast-moving drone with
ground PTZ camera (first video), (2) track a moving person
with flying UAV, and (3) track a drone with PTZ camera
which is mounted on a flying drone. Those configurations
are quite challenging due to a several factors including
camera motion, out-of-view, motion blur, scale variance,
partial occlusion and object deformation. Figure 6 shows
the precise tracking results obtained in complex environ-
ments and constrained power resources in real-time on CPU,
exhibiting the robustness and practicability of the tracker
in real-world applications; the blue lines illustrate the FPS
changes during tracking.

V. CONCLUSIONS

In this work, a dynamic tracker is implemented achieving
real-time speed on CPU with high accuracy. The network
selection module adaptively determines the optimal compu-
tational graph based on the tracking complexity. The experi-
ments both on aerial benchmark and real-world tests demon-
strate its effectiveness and portability on UAV-tracking.

REFERENCES

[1] K.-H. Lee and J.-N. Hwang, “On-road pedestrian tracking across
multiple driving recorders,” IEEE Transactions on Multimedia, vol. 17,
no. 9, pp. 1429–1438, 2015.



Fig. 6: Visualization of real-world UAV tracking.

[2] S. Tang, M. Andriluka, B. Andres, and B. Schiele, “Multiple people
tracking by lifted multicut and person re-identification,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 3539–3548.

[3] A. Tsoukalas, D. Xing, N. Evangeliou, N. Giakoumidis, and A. Tzes,
“Deep learning assisted visual tracking of evader-UAV,” in 2021
International Conference on Unmanned Aircraft Systems (ICUAS).
IEEE, 2021, pp. 252–257.

[4] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H.
Torr, “Fully-convolutional siamese networks for object tracking,” in
European Conference on Computer Vision. Springer, 2016, pp. 850–
865.

[5] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan, “Siamrpn++:
Evolution of siamese visual tracking with very deep networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 4282–4291.

[6] Y. Xu, Z. Wang, Z. Li, Y. Yuan, and G. Yu, “Siamfc++: Towards
robust and accurate visual tracking with target estimation guidelines.”
in AAAI, 2020, pp. 12 549–12 556.

[7] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, and W. Hu, “Distractor-
aware siamese networks for visual object tracking,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp.
101–117.

[8] C. Fu, Z. Cao, Y. Li, J. Ye, and C. Feng, “Siamese anchor proposal net-
work for high-speed aerial tracking,” arXiv preprint arXiv:2012.10706,
2020.

[9] Z. Chen, B. Zhong, G. Li, S. Zhang, and R. Ji, “Siamese box
adaptive network for visual tracking,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
6668–6677.

[10] D. Guo, Y. Shao, Y. Cui, Z. Wang, L. Zhang, and C. Shen, “Graph
attention tracking,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2021.

[11] Z. Cao, C. Fu, J. Ye, B. Li, and Y. Li, “SiamAPN++: Siamese
Attentional Aggregation Network for Real-Time UAV Tracking,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2021, pp. 1–7.

[12] ——, “Hift: Hierarchical feature transformer for aerial tracking,” arXiv
preprint arXiv:2108.00202, 2021.

[13] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583–596,
2014.

[14] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, “Discriminative
scale space tracking,” IEEE transactions on pattern analysis and
machine intelligence, vol. 39, no. 8, pp. 1561–1575, 2016.

[15] M. Danelljan, G. Bhat, F. Shahbaz Khan, and M. Felsberg, “Eco:
Efficient convolution operators for tracking,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 6638–6646.

[16] H. Kiani Galoogahi, A. Fagg, and S. Lucey, “Learning background-
aware correlation filters for visual tracking,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 1135–1143.

[17] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg, “Beyond cor-
relation filters: Learning continuous convolution operators for visual
tracking,” in European Conference on Computer Vision. Springer,
2016, pp. 472–488.

[18] D. Guo, J. Wang, Y. Cui, Z. Wang, and S. Chen, “Siamcar: Siamese
fully convolutional classification and regression for visual tracking,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 6269–6277.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in neural information processing systems, 2017, pp. 5998–
6008.

[20] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 116–
131.

[21] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and
S. Savarese, “Generalized intersection over union: A metric and a
loss for bounding box regression,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
658–666.

[22] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition, June 2009.

[23] H. Fan, L. Lin, F. Yang, P. Chu, G. Deng, S. Yu, H. Bai, Y. Xu,
C. Liao, and H. Ling, “Lasot: A high-quality benchmark for large-
scale single object tracking,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2019, pp. 5374–5383.

[24] M. Muller, A. Bibi, S. Giancola, S. Alsubaihi, and B. Ghanem,
“Trackingnet: A large-scale dataset and benchmark for object tracking
in the wild,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 300–317.

[25] L. Huang, X. Zhao, and K. Huang, “Got-10k: A large high-diversity
benchmark for generic object tracking in the wild,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2019.

[26] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European Conference on Computer Vision. Springer,
2014, pp. 740–755.

[27] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

[28] A. Lukezic, T. Vojir, L. ˇCehovin Zajc, J. Matas, and M. Kristan,
“Discriminative correlation filter with channel and spatial reliability,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 6309–6318.

[29] M. Mueller, N. Smith, and B. Ghanem, “A benchmark and simulator
for uav tracking,” in European Conference on Computer Vision.
Springer, 2016, pp. 445–461.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[31] X. Li, C. Ma, B. Wu, Z. He, and M.-H. Yang, “Target-aware deep
tracking,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 1369–1378.


