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Abstract. In this work, we explore the process of designing a long-term
drone surveillance system by fusing object detection, tracking and classi-
fication methods. Given a video stream from an RGB-camera, a detection
module based on YOLOV5 is trained for finding drones within its field
of view. Although in drone detection, high accuracy and robustness is
achieved with the underlying complex architecture, the detection speed
is hindered on ultra HD-streams. To solve this problem, we integrate a
high efficient object tracker to update target status while avoiding run-
ning the detection at each frame. Benefited from lightweight backbone
networks with powerful Transformer design, the object tracker achieves
real-time speed on standalone CPU devices. Moreover, a drone classi-
fication model is applied on the output of the detection and tracking
mechanisms to further distinguish drones from other background dis-
tractors (birds, balloons). By leveraging inference optimization with Ten-
sorRT and ONNX, our system achieves extremely high inference speed
on NVIDIA GPUs. A ROS package is designed to integrate the afore-
mentioned components together and provide a flexible, end-to-end drone
surveillance tool for real-time applications. Comprehensive experiments
on both standard benchmarks and field tests demonstrate the effective-
ness and stability of proposed system.

Keywords: Drone Detection and Classification · Object Tracking · Su-
per Resolution

1 Introduction

The area of Unmanned aerial vehicles (UAVs) has drawn increasing attention in
recent years due to its applications cross diverse fields such as aerial photogra-
phy [10], mapping and surveying [28], search, rescue and emergency response [1].
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The advent of low-cost small commercial drones led to their deployment into
real world, while raising safety, privacy concerns and other types of challenges to
the aviation industry [29], border security [8], and critical infrastructures [14].
Therefore, the demand of developing surveillance systems, especially for small
drones has risen in the past few years to prevent intentionally or unintention-
ally misused of drones in urban environments, coastal border, airports and other
safety-sensitive areas.

In recent years, there have been a lot of efforts in designing drone surveil-
lance systems [6, 26] by adopting effective detection and countermeasure tech-
niques including LiDAR, radio detectors, visual camera and passive acoustic sen-
sors. Among those techniques, visual detection based on Deep Learning methods
achieves remarkable progress on both effectiveness and accuracy. With the de-
velopment of deep learning theory and optimization of hardware, modern object
detectors obtain human-level compatible accuracy and operate in real-time speed
even on mobile devices. However, drone detection is still a challenging problem
due to its small size and fast maneuvers. Other factors caused by illumination
change, heavy occlusion and target disappearance from the camera view further
hinders drone detection.

To deal with the small object detection problem, recent works[19, 27, 5] uti-
lize larger and deeper networks with more complex architecture to improve the
model discriminative ability. However, constrained by the input size of neural
networks, small drones only take less than 100 pixels in HD-frames, providing
insufficient information for feature extraction and detection. On the other hand,
blurred imaging of small objects from a long distance makes it harder to dis-
tinguish drones from other similar distractors like birds and airplanes. The only
efficient solution is enlarging their input size to provide more useful information.
However, this causes the exponential increment of computational complexity and
will use most of the computational power, resulting in the processing delay and
detection discontinuity in real applications.

In this work, we build a drone detection module based on YOLOV5. Due to
the trade-off between complexity and precision, we choose YOLOV5-m as the
base model and restrict the maximum input size to 1280 pixels. To avoid the
computational overload caused by the drone detection, the used module only
operates in a very low frequency(<1Hz). Considering the sparsity of drones oc-
currence in the field of view as well as the flying trajectory continuity, it is not
necessary to run the detector on each frame and we use it as an indicator of the
first appearance and disappearance of drones in camera view. Once a drone is
captured by detection module, a more efficient object tracker running in real-
time speed using low-resources will be initialized to update the drone status in
the following frames.

Unlike object detection in which the model runs through the whole frame,
object tracking ,instead, identifies the target object from a local patch, resulting
in efficient and accurate schemes. Moreover, modern trackers are optimized for
dealing with varying challenging scenarios like fast motion, low-resolution, fre-
quent occlusion, etc. Recent years have witnessed many successful deep learning
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based object trackers , especially the family of Siamese Network based track-
ers[4, 2, 7], which play an important role in the visual tracking community. In
this work, we employ a recent Transformer based object tracker, SiamTPN [32],
which achieves a desired trade-off between tracking efficiency and accuracy for
dealing with varying computational demand. Specifically, the SiamTPN obtains
State-Of-The-Art performance while running at real-time speed on both CPU
and GPU ends. The outputs from the drone detection modules initializes the
tracker module. The trackers after initialization will track the detected objects
as they move around frames. Once the target is lost or out of field view, the
tracker will be removed from trackers’ list. Thanks to the computational effi-
ciency design, the trackers can be easily deployed to track multiple objects in
parallel way on single GPU.

However, both detector and trackers may produce false negative predictions.
The detector may takes airplanes or birds from a long distance as drones. Mean-
while, the object tracker fails when the object is out of view, occupied or dis-
tractors occur. In either case, it demands a robust classifier with strong discrim-
inative ability to determine the the final classes for outputs from detector and
trackers. Only the objects with a higher confidential score will be kept. To this
end, we employ a pre-trained Resnet-50 [12] model and fine tune the final lay-
ers with custom classification datasets for drones. To deal with the tiny drones
with very low resolution, we deploy a light-weight super resolution method, SR-
GAN [18], to generate high-resolution patches before feeding them into classifier,
which further improve the stability of classification model [24]. In practice, we
only apply SRGAN [18] model on small patches with size less than 50×50 pixels.

By integrating the aforementioned components, we propose an efficient, end-
to-end drone surveillance system, which can be easily deployed into embedding
devices with low computational resources. We further boost the effectiveness by
leveraging inference optimization techniques such as TensorRT and ONNX.

2 Related Work

2.1 Object Detection

The deep learning based object detection methods include two branches, like
the two-stage methods,including Faster RCNN [25], and single-stage methods
using SSD [21], YOLO [15, 16] and FCOS [27]. Two-stage methods divide the
detection procedure into a coarse classification problem followed by a fine-tuning
step, leading to a higher accuracy. Single stage methods, instead, aim to a de-
sired trade-off between efficiency and precision, which is preferred in the systems
with limited computational power. To balance the computing resource allocation
between object detector and trackers, we employ the single stage YOLOV5 as
our detector.

2.2 Object Tracking

The tracking methods can be divided into: a) Discriminative Correlation Filter
(DCF) based trackers and b) deep learning-based trackers. DCF based track-
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ers [13, 23, 3] could run with real-time speed on CPU, but their performance
is constrained by the feature representation ability of handcrafted features. In
contrast, deep learning based trackers, like the Siamese-based trackers [4, 2, 7,
32] achieve remarkable enhancements in both accuracy and speed by utilizing a
high-end GPU device.

2.3 Classification and Super Resolution

Early classification methods like AlexNet [17], and Resnet [12] get higher accu-
racy in using deeper and wider networks. Among those classifiers, the Resnet
family is the most popular framework and is adopted in many computer vision
tasks as backbone network. In this work, we use Resnet-50 as our classifier, due
to its balance between efficiency and accuracy. We further boost the performance
by applying a lightweight super-resolution model, SRGAN, to deal with the small
drones with low resolution.

2.4 Inference Optimization

TensorRT is a C++ library that facilities high-performance inference on NVIDIA
graphics processing units (GPUs). TensorRT applies graph optimizations, layer
fusion, among other optimizations, while also finding the fastest implementation
of that model leveraging a diverse collection of highly optimized kernels.

3 Drone Surveillance System

This section presents the drone surveillance system design and the implementa-
tion details of each component.

3.1 System Overview

Given the frame f at time t, we first resize the image without crop and main-
tain the aspect ratio before feeding them into detector D. For images of size
1920 × 1080 or less, we resize images so that the longer edge equals to 1280
pixels. The object detector returns a new set of recognized drones as d =
{d1,d2, · · · ,dn}, where di is represented as the concatenation of the bounding
box coordinates {x, y, w, h} and confidential score sD. For images with higher
resolution, we follow the image tilling strategy [30] in which the image is divided
into multiple tiles of a fixed size. The tiled images are processed with same de-
tector in a batch manner. The final prediction is the aggregation of outputs from
each tile. The detector is set to run at low frequency (<1Hz) for inference effi-
ciency.

Each tracker T is responsible for a specific object and returns the updated
status as ti = {x, y, w, h, sT } where sT is its confidential score. Together, we
have a set of drone candidates {d1,d2, · · · ,dn t1, t2, · · · , tm} from the detector
and trackers outputs. We crop patches according to those candidates and feed
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Fig. 1. Drone surveillance system overview

them into the drone classifier C for further discrimination. A confidential score
sC is provided for each candidate. Overall, the final confidential score is calcu-
late as s = sC × sD,T ; only candidates with this score s higher than a threshold
will be kept for further processing, while for those candidates whose confidential
score falls below the threshold, the corresponding tracker will be removed from
tracker list.

A matcher, based on the criterion of maximum Intersection Over Union
(IOU), is designed to match the candidates from d to t. As shown in Figure 1,
the process is similar to non maximum supppression (NMS). Specifically, if a
candidate di is matched to tj , or vice versa, the two instances will be merged
and use the one with higher confidential score as final output. If no matches
found for instances from d, a new tracker T will be initialized and added into
the tracker list. We should mention that the matcher only works when both
detector and trackers are active.

3.2 Detection Module

We select the single-stage object detector YOLOv5 [16] for its efficiency and
speed on object detection tasks. Specifically, the COCO [20] pre-trained YOLOv5-
m model with input size of 1280 is adopted. In all experiments, the networks
were trained using 40 epochs on 4-GPUs with 16 images per batch. We use
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the ADAM [22] optimizer with the initial learning rate of 10−4. For the train-
ing dataset, we consider the image sequences from Drone vs. Bird Competi-
tion [26] and USC drone detection and tracking dataset [31]. We uniformly sam-
pled frames with a fixed rate (5 fps) from each sequence and extracted 32067
images in total for training. We select 4 videos from Drone vs. Bird training
dataset for detection and tracking validation purpose.

3.3 Tracking Module

For object tracking, we employ a real-time Siamese Network based deep learn-
ing tracker, SiamTPN [32], for its robust performance and real-time speed. As
shown in Figure 2, the SiamTPN utilizes a lightweight backbone and optimized
transformer based pyramid network to learn discriminative features from both
template and search images. The final prediction is returned after the cross cor-
relation layer. The template image is cropped from image when the detector
recognizes a new drone which is not tracked yet. The search image is cropped
from the following frames and resized into 256 × 256. Benefited from the small
input size and optimized architecture, the tracker runs at 50 FpS on CPU and
over 100 FpS on GPU, where more details can be found in [32]. We compare the
performance between the SiamTPN with default trackers provided by OpenCV
in Section 4. For inference, we directly use the pre-trained model from SiamTPN
without further finetuning since the tracker is designed to track any generic ob-
jects specified by the template.

Fig. 2. SiamTPN: Architecture Overview

3.4 Classification Module

The drone classification module is fine-tuned on a pre-trained Resnet-50 [12]
model. We cropped drones patches and resize them into 224 × 224, yielding
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33733 positive samples. For negative images, we randomly select images from the
ImageNet [9] dataset. We found that the negative images are easy to be classified
due to the low similarity to drones. Therefore, we run the drone detector on the
training dataset from the object detection part and select the false positive
predictions as false samples for classification, resulting in a robust performance.
During training, we freeze the whole network except the final fully-connected
layers for fine-tuning. The network is trained for 50 epochs with 128 images per
batch.

4 Experimental Studies

This section first presents the effects of proposed components in the aspects
of accuracy and speed. We further apply the system in the field test videos to
validate its performance in real-world applications.

4.1 Overall Performance

In order to compare the effect of each proposed component regarding accuracy
and speed, we choose 4 videos from the Drone vs. Bird traning dataset as valida-
tion dataset. We adopt the Average Precision (AP) metric which is extensively
used in an object detection task. The prediction outputs are counted as cor-
rect when its IOU score with a ground truth bounding box is higher than a
threshold. In this study, we test the AP score under varies criterion, including
AP under different threshold value (AP, AP50, AP75) and AP for drones with
different sizes (APS , APM , APL). All AP scores are calculated with COCO API.
Table 1 shows the overall performance on validate set when different compo-
nents are active. YOLOv5 detector alone shows relative poor performance on
video detection, having an AP of 43.4. We notice that the YOLOv5 detector is
sensitive to the complex scenarios like object deformation, illumination and ob-
ject occupation. Since object detector treats videos as independent frames, the
predictions shows inconsistency even in adjacent frames. The tracker boosts the
performance by 50% by guaranteeing the prediction continuity between frames.
The AP50 achieves 89 on the validated dataset. The classification module brings
relative small performance changes, but it provides an additional check which is
useful when the trackers lost the target and return false positive outputs.

AP AP50 AP75 APS APM APL

YOLOv5 43.4 62.3 52.4 30.5 48.1 64.7
YOLOv5 + SiamTPN 63.1 89.0 77.8 45.9 69.3 91.2
YOLOv5 + SiamTPN + Classification 63.5 89.9 77.9 47.2 69.1 91.5
Table 1. Overall performance on Validation dataset. Average Precision (AP) scores
are calculated with the COCO API. AP50, AP75 represent AP with IOU above 0.5,
0.75 respectively. APS , APM , APL represent AP for small, medium, large objects re-
spectively.

To further investigate the tracker’s performance, we compare the SiamTPN
with 3 default trackers from OpenCV, which are: a) CSRT tracker [23], b) KCF
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tracker [13], and c) MIL tracker [11]. We perform an One-Pass Evaluation (OPE)
and measure the precision and success of different tracking algorithms on validat-
ing videos. Different from Average Precision, in OPE, the precision is computed
by comparing the distance between tracking result and ground truth bounding
box in pixels. The success is computed as the the IOU scores between tracking re-
sult and ground truth bounding box at different threshold levels. Finally, we rank
the tracking methods using the Area Under the Curve (AUC). As shown in Fig-
ure 3, the KCF performs poorly on both precision and accuracy. CSRT provides
compatible results on precision scores but still have a large gap on success rate
compared with SiamTPN. Table 2 shows the speed comparison between those
trackers, in which, MIL, KCF and CRST only support CPU while SiamTPN
support both CPU and GPU. Overall, SiamTPN achieves best performance in
the aspects of speed, accuracy and robustness.

Fig. 3. Tracking performance comparison with OpenCV trackers

MIL KCF CSRT SiamTPN SiamTPN(GPU)
FpS 6 240 45 52 102

Table 2. Speed comparison between trackers

4.2 Speed Analysis

In Table 3, we compare the inference speed of each modules and their combina-
tion performance. Due to the large input size (1280), YOLOv5m only operates
at around 12 FpS on GPU after inference optimization, which is not suitable
for applications with real-time requirements. Instead, the optimized SiamTPN
achieves 100+ FpS on GPU. Benefiting from small network size and smaller in-
put size, the classification module and super resolution model, SRGAN, require
much less computation resources compared with other detection and tracking
models. By combining the YOLOv5 and SiamTPN and constraining the detec-
tor operation frequency, the inference achieves a real-time speed of 37 FpS. The
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speed decline comes from the heavy detection module and multiple trackers run-
ning in parallel. Nevertheless, the combination of detector and trackers obtains
a desired trade-off between accuracy and speed. The classification module and
SRGAN introduces a slight computational burden to the system.

# YOLOv5 SiamTPN Classification SRGAN FpS
1 ✓ 12
2 ✓ 102
3 ✓ 178
4 ✓ 205
5 ✓ ✓ 37
6 ✓ ✓ ✓ 32
7 ✓ ✓ ✓ ✓ 29

Table 3. Speed comparison between individual modules and difference configurations.
All models are accelerated with GPU and TensorRT.

Fig. 4. Visualization of drone surveillance system in field test. The drones are captured
by a still camera on the ground (first row) or a camera mounted on a flying drone
(second row)

4.3 Field Test Analysis

To validate the reliability of the proposed drone surveillance system in real-
world scenarios, we set up several field tests with challenging factors including
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Fig. 5. Drone surveillance performance in real world test.

scale variance, out-of-view, object deformation and partial occlusion. Figure 4
shows the flight status and detection results in difference scenarios. To verify
the advantage of proposed system over single detection modules, we compare
the drone trajectories coverage percentages based on their prediction results. As
shown in Figure 5. For better visualization, we recorded GPS data and plot the
trajectory in 3D as red dots. The dots are labeled as blue only if the drone in
this position is correctly recognized. The configuration with YOLOv5, SiamTPN
and Classification obtains more consistent predictions than detector alone.

5 Conclusions

In this work, we propose a long-term drone surveillance system which consists
of a YOLOv5 based drone detector, real-time object tracker, drone classifier and
other auxiliary modules. Those modules are integrated in an efficient way and
are optimized with inference acceleration techniques (TensorRT and ONNX)
to achieve best performance. Our method ranked second in the 2022 Drone vs.
Bird detection challenge. We have also verified our system in real-world test with
the preliminary results from both field tests and competition demonstrating the
effectiveness of the proposed system.
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