Deep learning assisted visual tracking of evader-UAV
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Abstract—In this work the visual tracking of an evading
UAV using a pursuer-UAV is examined. The developed method
combines principles of deep learning, optical flow, intra-frame
homography and correlation based tracking. A Yolo tracker for
short term tracking is employed, complimented by optical flow
and homography techniques. In case there is no detected evader-
UAYV, the MOSSE tracking algorithm re-initializes the search
and the PTZ-camera zooms-out to cover a wider Filed of View.
The camera’s controller adjusts the pan and tilt angles so that
the evader-UAV is as close to the center of view as possible, while
its zoom is commanded in order to for the captured evader-UAV
bounding box cover as much as possible the captured-frame.
Experimental studies are offered to highlight the algorithm’s
principle and evaluate its performance.

I. INTRODUCTION

Long term target detection poses several issues and meth-
ods that relying on Deep Learning can discriminate the target
without requiring prior frame information [1]. The downside
is that given certain visual noise conditions or target scale,
the target may not be identified or not be properly classified.
This results in a target loss, necessitating the utilization of
long term tracking techniques.

Similar works on the concept of Deep Learning based
tracking, assisted by other non deep learning oriented meth-
ods have recently appeared in the literature. In [2] a homogra-
phy based method is used to validate the matching of the ve-
hicles identified by Yolo tracker in subsequent frames. In [3]
a method based on Homography and Optical flow is used to
model the background versus the moving objects and assist
the Deep Learning algorithm detection on smaller objects by
providing regions of interest of enhanced resolution to the
Deep Learning input. In [4] a deep learning approach is used
to determine the optical flow between frames and use it in
order to model the background versus the foreground.In [5]
an assisted Deep Learning technique is used in order to
reduce the calculations for object identification and tracking,
for efficient use on mobile devices.

Deep Learning have also been used for UAV-detection and
tracking. In [6] the YOLOV3 is used running on GPU for
UAVs tracking, in order to avoid potential risk of collision.
In [7] a segmentation network is employed for detection
of stationary aircraft below the horizon, rejection of mov-
ing ground vehicles and simultaneous detection of multiple
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aircraft. In [8] a method generates semi-synthetic training
data, for training a deep convolutional network to detect
non cooperative UAVs from video sequences. The work
in [9] compares different single-shot detectors and presents
an optimized architecture. The work in [10] introduces a tiny
Single Shot Detector [11], which is optimized to minimize
the model size, while retaining detection performance. How-
ever, those methods either require powerful GPU devices to
achieve high performance or run on CPU at low speed, which
is insufficient for on-board experimentation.

In this article, a tracking PTZ camera is used on a pursuer
UAV as shown in Figure [I] top left with the purpose to detect
and track an evader UAV. To increase the robustness of the
Yolo-identification and tracking method, a Correlation [12]
technique is employed followed by a second one relying on
Homography and Optical Flow between frames [13]. These
methods may track the target based on correlation and motion
detection when the Yolo tracker fails to identify a target.

Fig. 1. Tracker and pursuer UAV with mounted PTZ Camera

In our method, various techniques are deployed in order to
enhance the performance of the deep learning identification
of a target UAV in both computation power and identification
accuracy. In order to solve the issue of a missed identification
by the Yolo tracker, a long term tracker based on foreground
extraction after background subtraction using a homography
and optical flow based method is deployed. This enhance-
ment provides possible regions where the UAV target may
be located when the target is in motion, and focuses the deep



learning tracker on those regions resulting in a focused area
for UAV identification. In order to maximize performance,
the Yolo algorithm is executed in a cropped window from the
full image frame, around the region of interest as given by
the previous frame identification, either by Yolo or our long
term tracking scheme. YOLOV4-tiny is run in CPU mode in
order to bypass the CUDA GPU requirement which is not
available in the small form PC systems used in our UAVs and
in order to decrease the execution time the method is used
in combination with CPU related performance enhancements
as the core Deep Learning framework.

II. VISUAL TRACKING ALGORITHM

The target identification process looks at the current full
frame using the Yolo tracker. If a target is found and
classified as UAV, Yolo is run in a cropped window around
the found target in the next frame and the process continues
in the cropped space for as long as a target is identified
with a certainty exceeding 50%. If the target is lost, then the
optical flow and homography based tracking is deployed in
the whole frame. If a possible UAV-target is provided, then
Yolo runs in the cropped window to validate the target.

A. Yolo tracker

In this section, the deep learning based target identification
stage based on YOLOv4-tiny is introduced. YOLOv4-tiny
method is designed based on YOLOv4 method to make it
have faster performance in object detection, thus making it
ideal for on-board UAV deployment. The detector consists
of three parts: (1) a backbone network for feature extraction,
(2) the feature pyramid network for extracting multi-scale
features for detection and (3) the YOLO detection head to
output the detection results. The YOLOv4-tiny method uses
the CSPDarknet53-tiny network as a backbone network to
replace the CSPDarknet53 network in YOLOv4 method, in
order to boost the detection speed on low-end GPU devices.
The backbone network consists of two basic block types:
ConvBlock and CSPBlock.The input images are fed into
two ConvBlocks, where each block contains a Convolution
layer followed by a Batch Normalization Layer, an activation
function and a max pooling function. The feature maps with
reduced resolution are fed into three CSPBlocks to learn
features in different scales. The CSPBlock module divides
the feature map into two parallel tracks and combine them
in a residual way to increase gradient flow propagation.
The CSPBlock module achieves similar learning ability of
convolution network in a parameter efficient way. Compared
with the original CSPBlock in YOLOv4, it removes the
computational bottlenecks and replace the ReLU activation
function with a more efficient LeakyRelU function to further

simplify the computation process. The LeakyReLU function
. xi x>0 :
is: y; = % <0 where a; € (1,4) is a constant
parameter.

Before feeding the features from the backbone network
into the detection head, those features are fused by a

feature pyramid network in order to extract feature maps

with different scales and increase object detection speed.
Considering the detection of UAVs in variable sizes, ranging
from a short to a long distance, we employ three different
scale feature maps 13x13, 26x26 and 52x52 to predict the
detection results, under the assumption of a 416x416 image
size. To enhance the feature representation ability of the
network, we further fuse the features from different scales by
inserting an interpolation function. Low level features with
higher resolutions are down sampled and appended to the
higher level features. Meanwhile, upsampling is deployed
in a reversed way. The interpolation and fusion process
significantly increases the receptive field with almost no
reduction of the network speed.

As in YOLOv4 method, the prediction head follows the
anchor-based detection mechanism to match the ground truth
bounding boxes with the feature points on feature maps. Even
though the size of UAVs can vary in real scenarios, the aspect
ratio of the bounding boxes is relatively fixed compared with
general objects around the target. Hence, the optimal anchors
settings are pre-calculated according to the training data, and
then the number of anchor boxes is also decreased from 9
to 2. Specifically, two different scale anchors with aspect
ration of 1:1 and 1:2.25 are used for the detection head of
each feature map from the pyramid network.

The prediction process of Yolov4-tiny method contains a
bounding box regression branch and a classification branch.
The feature points on feature map are labeled as positive
if the corresponding anchor has an IOU score higher than
a threshold. Otherwise, the points are labeled as negative.
Meanwhile, the positive points are expected to predict the
offsets between the ground truth box and the corresponding
anchors. The network predicts the shift distances from the
corner position of anchor to the corresponding corner of the
ground truth box as a vector d* = (dy1,dy1,dx,dy2), wWhere
x1,y1,x2,y2 represent the coordinate of the left-top corner
and right-bottom corner respectively. The final prediction
bounding box can be calculated by adding the offset to the
original coordinate of the anchor.

Finally, the objective function consists of two parts: 1)
classification loss and 2) bounding box regression loss. Let
xij = {1,0} be an indicator for matching the i-th default
anchor to the j-th ground truth box. ¢! and ¢ are the
negative and positive prediction probability respectively. The
classification loss is:
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where the IOU is the intersection between the ground



truth bounding box and the predicted bounding box, @

denotes the Euclidean distance between the center position of
the predicted bounding box and the ground truth bounding
box, and ¢ is the minimum diagonal distance of the box
that can contains the predicted bounding box and truth
bounding box. The training data set is collected from a
website which provides 9000+ images containing drones.
Also 1000 negative images which does not contain a UAV
from the ImageNet data set are randomly selected. During
training, the images are resized into 416 x 416 after random
augmentation including flip, rotation and random crop.

B. Long term motion based tracker

The YOLO 4 implementation has a few weaknesses that
prohibit the sole use of the system for long term tracking,
as it is possible to lose the target completely and with
local consistency for multiple frames depending on the
background of the object, its distance from the camera and
the used training set. Inhere, a long term tracker as described
in [13] is used in combination with the YOLO tracker to
discriminate motion from the background and keep tracking
the object up to the point YOLO finds it again; its underlying
process is described in Figure 2]

The identification starts by implementing YOLO in the
whole first frame. If a target is found then runs the subse-
quent search in a cropped version of the next frame, around
the previously identified target. If the identification in the
cropped window fails, the system reverts to running Yolo
in the whole image and if a target is not found reverts
to running the long term tracker. A correlation filter based
tracker is also employed in order to follow the object,
initialized around the YOLO found window when confidence
is high enough, otherwise around the motion based tracking
identified window after a certain confidence.

At all times the correlation tracker runs around the
currently found by the Yolo or Optical Flow-Homography
methods target and will track the target further if both those
methods fail to deliver a result that make sense in the sense
of be close to the region of the last know target position. A
flow diagram of the method is presented in Figure [2]
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Fig. 2. Long term tracker using Assisted Deep Learning

C. Object tracking using optical flow and homography

The long term moving UAV identification is based on
optical flow and homography calculations [14] between two
sequential frames. A group of prominent image features [15],
[16] is first identified in the previous image frame and optical
flow is used to estimate the motion of the features in the
current frame as shown in Figure 2] in the cyan block.

Assuming the static background holds the majority of
the image features, the homography between the feature
points in the previous frame and optical flow estimated new
positions of these features in the current frame is calculated.
The homography is then used to estimate the feature points
position in the current frame and the positions are compared
to those estimated by the optical flow and the background
points are those with a distance below a threshold, as seen
in Figure 3]In the figure, the black dots indicate the feature
points identified in the previous frame and the cyan and
red dots the estimated next frame position of those features
based on Optical flow and Homography respectively. The
purple dots correspond to the estimated points from the two
methods that have a distance below a threshold, indicating
that the points belong to the background as their optical flow
determined motion closely matches the background motion
estimated by the Homography. The points where the distance
is above the threshold are considered as the moving object.

The optical flow is calculated using the Lucas - Kanade
method [17] with the an extension using a pyramidal scheme
with variable image resolutions [18]. The basic optical flow
premise is to discover the position of an image feature from
previous frame, in the current frame.

The output of the optical flow calculations is the estimated
features position in the current frame. An example of the
feature matching between the current and previous frames is
presented in Figure ]

D. Homography & Optical Flow

The homography or perspective transform can be formu-
lated as a 3 x 3 operator H on homogeneous coordinates

X hoo  hor  hoz| | xi
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The resulting normalized homogeneous coordinates x},y. are
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while the operator H is calculated such that minimizes the
back projection error
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The computed homography matrix is refined further with
the non linear Levenberg-Marquardt optimization [19], [20]
method to further reduce the re-projection error.When the
tracker UAV is moving, static camera based background
subtraction algorithms cannot provide an accurate UAV-
tracking, and another background subtraction method is
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Fig. 4.

Image feature matching between successive frames

needed for this case. The method involves the discovery of
special image areas with specific characteristics in the camera
image, which we note as the image feature set Fj, at time f.
The feature set is a collection of pixel points in the camera
image p; = [px;, py;]. Various algorithms are available for the
discovery of image features [15].

For each of the discovered image features of the previous
image frame, the optical flow F,, is derived as a collection
of velocity vectors that correspond to each of the image fea-
tures. For the optical flow estimation of the discovered image
features, the OpenCV function “calcOpticalFlowPyrLK” is
used. The method operates on a sparse feature set using
the iterative Lucas-Kanade method with pyramids and the

inputs are the current and previous frames as well as the
image features identified from the previous frame. The output
is the estimated feature position in the current frame. The
algorithm also provides a status flag for each point that
describes whether a flow was found for the specific point.

The long term tracking method using the above homogra-
phy and optical flow principles, differentiates the foreground
to the background image features discovered in the previous
frame. The estimated background points are given by the
transformation of the strong image feature points using a
homography matrix and comparison of those positions to
the estimated positions by the optical flow method, in the
current frame.

Given an image g;_; in time ¢ — 1, we derive the estimation
of the positions of the selected image feature points set
F;, in the image g; in time ¢, based on the homography
calculated between the strong feature points of the previous
frame and their estimated positions by an optical flow method
as described in Section in the current camera frame, as
described in the previous sections.

The optical flow provides the estimation p/'”" of the
position of a feature point in the previous frame g;_;, in
the current frame g; for the p; Hpoint in the previous frame
and an estimation of the point p,"™® is also provided from the
homography based transformation on the feature points set of
the previous frame g,_. The distance b, = ||p/'”" — pF™|| is
evaluated and if b; (p;) > bprga, Vpi € F;, (image feature point
set), then the point p; is considered as moving, otherwise as
a background one.

The foreground points correspond to those describing the
UAV; a dilation operator is followed by the computation of
a predicted bounding box around the blob of points that sur-
rounds the UAV, as shown in FigureElbottom left window. In
the top left window the strong image features are represented
by black dots, in the top right window the foreground features
are separated from background and are then plotted against
a black background with a dilation operation as shown in
the bottom left window, then a bounding box is calculated
around the dilated blob as shown in bottom right window
to identify the moving target. When the background has
static objects across a wide range of distances to the tracker
UAV, some points may be identified as foreground, thus a
second background layer is assumed and the homography is
recalculated using this new subset, in order to identify the
remaining background points. It should be noted that this
layer can be computed extremely fast due to the lack of
need to compute the optical flow.

E. Correlation based long-term tracker

One downside of the Yolo and optical flow - homography
techniques is that when the tracked object remains static
and blends with the background, or is not directly identified
by the deep learning network, can be missed, thus a cor-
relation short term tracker relying on the MOSSE tracking
algorithm [12] is used to cover for that case, keeping the
tracking active by simple correlation check between frames.



Fig. 5.

Estimated image features on tracked UAV

III. EXPERIMENTAL STUDIES

In the ensuing studies, one evader UAV was moving
in a space shown in Figure [f] while the pursuer (tracker)
UAV [21] monitored the space. The tracker octarotor UAV
is equipped with a 20X optical zoom PTZ-camera and an
Intel i7-system running ROS and communicating with the
base through Mavlink. Inhere, Yolo runs once in high deep
learning identifier resolution (800px) and if there is no result,
it runs in the same frame in a lower resolution also in the
whole image (416px). If a solution is found in the next frame
Yolo runs in a cropped window. If all Yolo methods fail
to provide a result, the optical flow method may provide a
viable solution and MOSSE runs on the place dictated by
it. The MOSSE window will be initiated by either the Yolo
or optical flow based tracking window and keep the tracking
alive using correlation if both other methods fail to provide a
result. The system uses the MOSSE window to move the PTZ
camera pan and tilt in order to center the object and order the
camera to zoom in when the target UAV is near the center
of the camera frame. The results are showing the MOSSE
tracking window position and width-height difference to
the manually annotated actual UAV bounding box in every
video frame. The actual bounding box is considered as the
box that fully covers the UAYV, including the propellers and
landing gear. The pursuer and target UAVs are following the
trajectory as shown in Figure [§]in red and blue respectively.
A snapshot of the two UAVs flying is shown in Figure [T}

In the following Figure [ and Figure [J] the blue dots
correspond to the identification of the bounding box of the
UAV by the Yolo algorithm and the red to the identification
by the optical flow and homography based algorithm. The
count of the points is mentioned in the ”Yolo” and ”Assist”
title in the graphs, correspondingly.

In Figure [§] the error in pixels of the estimated bounding
box around the UAV X-Y top left corner from the actual
bounding box is shown. The error increases as the zoom
factor of the PTZ camera is also increased, due to the larger
displacements and bounding box widths when the UAV is
taking a much larger area of the camera image. Therefore
we use a normalized representation of the error divided by
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Fig. 6. Tracker (red) and pursuer (blue) UAV trajectories

the zoom factor, in order to correctly evaluate the error in
the various zoom stages as if the zoom factor was one. In
Figure [9] the error of the estimated bounding box width and
height is shown in pixels, while the the zoom factor of the
camera in focal length units (mm) is shown in Figure
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In the following table a summary of the identification is
presented for the method used to realize the long term track-
ing. A threshold is used to eliminate the outlier estimations
based on the previous successful Yolo estimated bounding
boxes, so that the PTZ camera will not be directed towards
a false positive bounding box. From the results is evident

TABLE I
ENHANCED IDENTIFICATION OF FLYING UAV

Yolo 4 | Homography % Assisted | Total Frames
-Optical Flow
831 95 10.25 926

that out of the 1675 captured frames the sole Yolo identifier
managed to identify the evader UAV in 89.75% while the
homography/optical flow enhanced version assisted in the
remaining 10.25% of the frames. Whenever there was no
identification of any UAV, the MOSSE algorithm was used
to re-initialize the video-tracking while at the same time the
camera was zooming out to cover a wider FoV.

The performance of the system varies depending on the
identification state, the Frames Per Second (FPS) analyzed
on the i7 Intel NUC PC used on the UAV with the camera
that performed the online tracking and PTZ camera control,
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were at 10-15fps average while a target was searched in the
full image and at 15-25fps when the search was done in
a cropped window around the previously found target in a
previous frame, after a successful identification.

IV. CONCLUSIONS

In this work a long term UAVs tracking and detection
system was developed for use on board of a UAV equipped
with a computer-controlled PTZ camera. The method uses a
long term tracker based on Homography and Optical Flow in
order to compensate for the case where the Deep Learning
detection algorithm may fail, resulting in a more robust
tracking method. The PTZ-camera adjusts its parameters so
that the tracked UAV spans a large portion of the frame
while being centered as much as possible. The selected
Deep Learning algorithm is adapted to run efficiently on a
CPU-based system. The experimental results showcase how
the two long term tracking and Deep Learning methods
complement each other for better tracking performance.
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